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SuMMARY

For the description of spatial dependency, the spherical model and the exponential model —
both developed for point data — are often utilized. Using both as initial models for different
regularizations (transects, plots), we examined the behaviour of the corresponding
covariance functions by means of simulation (Richter and Kroschewski, 2006). Now, the
theoretical considerations are confronted with results from two uniformity trials. In the first
trial, the spatial dependency of single plants was observed. Only by the summarizing of
plants to small plots and by the superimposition of environmental effects do there appear
covariances which could be modelled by the above-mentioned standard models. In the
second trial, larger plots were derived from the small plots and covariance models were
fitted. We used the SAS procedure MIXED with all available spatial variance-covariance
structures. Using the Akaike criterion, the covariogram functions show mostly anisotropy
and a sigmoid shape. Their nugget variance decreases with increasing plot size and/or plant
density. So far, the theoretical considerations seem to be confirmed. However, the sensitive
estimation of the range does not reflect the theoretical results. Further investigations, taking
into account crop, soil and weather-dependent results, are necessary.
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1. Introduction

The starting point of our considerations in part I of this paper was that in
agricultural applications of geostatistics the isotropic spherical or exponential
model is often used to describe spatial dependency (Richter and Kroschewski,
2006). However, these models were originally intended for point data. Therefore,
in the first part we dealt theoretically with the relations between point and
regularized data using the layout of transects and plots as is typical for
agricultural field experiments. As initial point data we chose the above-mentioned
models with or without nugget in the isotropic and geometrically anisotropic
form. By means of simulation the characteristics of regularized covariograms are
elaborated. Because the omnidirectional calculation of the covariogram function
is often used, we focused on this calculation and discussed the relation to the
directional covariograms. Except for quadratic plots, the initial isotropic point
data change to anisotropic data through regularization. For anisotropic point data
the anisotropy does not vanish. For which data the isotropic spherical or the
exponential model could be appropriate remains an outstanding question for
agricultural experiments.

In classic textbooks on mining geostatistics (Journel and Huijbregts, 1978; Rendu,
1981), there is a strong differentiation between data with punctual support and
data which come from higher dimensional support. In mining there is a consensus
that data can be observed as point samples when a smaller sample cannot be
drawn (i.e. approximately hand-sided) and/or the area/volume is small in relation
to the range of the covariance function and to the observed region (Akin and
Siemes, 1988).

In field experiments, such experiences are rare. Point data could be interpreted as
data from single plants or from small plots as are usually used in uniformity trials
(e.g. 1x1 m® or 2x2 m?). At this point, it is indeed questionable whether data from
normal plot sizes (e.g. in variety trials with 10 to 15 m?) can be considered as
point data.

For individual plants, Matérn (1986) has argued that the pure competition effect
between adjacent plants would provoke a negative covariance. For larger
distances, according to Matérn, the covariance function would have to oscillate
around zero with decreasing amplitudes. In field experiments, however, we have
to take into consideration that competition effects are superimposed by soil
effects. Continuously varying soil effects cause positive correlations. Both effects
are confounded — only the resulting effect can be observed. Moreover, in most
field experiments the purpose of investigation is not the reaction of single plants
but of plant stands, e.g. the plot yield. The plot value soaks up the individual
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variability, competition between the contiguous plants within the plot, and small-
scale soil heterogeneity.

The second question concerns the characteristics of the regularized covariogram
functions observed (Richter and Kroschewski, 2006). Can real data really confirm
these characteristics?

Below, the theoretical considerations will be confronted with results from real
data from two uniformity trials in Thyrow and Blumberg (experimental stations of
the Humboldt-Universitit zu Berlin).

2. Material and Methods

The first trial was laid out in three different fields from 1985 to 1987. In this trial,
the yield of single potato plants was recorded. Originally, it was not planned to
analyse competition effects, so the distances within (0.33 m) and between rows
(0.75 m) conform to the usual practice and were not graduated. Twenty plants
stood in each row (1985: 15 rows, 1986 and 1987: 25 rows). We calculated the
empirical covariance functions within and between rows.

In the second trial, several crops were grown on the same area (40x48 m?) in five
consecutive years (hemp 1954, winter rye 1955, sugar beet 1956, oats 1957, and
hemp 1958). The yield data were recorded on a regular grid with 480 plots of 2x2
m?,

The latter data were analysed in several publications (e.g. Bitz, 1968; Rabe, 1980)
using the empirical variance law of Fairfield Smith (1938) and modified methods.
Both authors dealt critically with Smith’s heterogeneity coefficient, which plays a
fundamental role in his approach. Rabe (1980) gave a first idea of how to use the
mean covariance between plots.

The fitting of covariance models assumes second-order stationarity. Because of a
trend in the x-direction, we detrended the data by subtraction of the corresponding
x-column median. Other methods would also have been possible. In designed
experiments, this assumption could be realized by an adequate block construction.
From the 2x2 m? plots, larger plots are derived with orientation in the x-direction
(4x2, 8x2, 10x2) and in the y-direction (2x4, 2x6, 2x8) by summarizing the
included 2x2-plot values.
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All calculations for the second trial were performed with PROC MIXED from
SAS release 9.1.3. We fitted all spatial variance-covariance-structures available in
this procedure (SAS notation in brackets):

- isotropic models: exponential (exp or with another parameterization :
pow), spherical (sph), linear (1in), log linear (1in1), matém (matern or
with another parameterization: mathsw), gaussian (gau),

- anisotropic models: several exponential approaches (powa, expa, expga),
spherical (sphga) and gaussian anisotropic (gauga),

each of them with and without nugget (for details cf. SAS 9.1.3).

In cases where two different parameterizations exist for the same model, we use
the abbreviation underlined. The corresponding covariance functions with nugget
are symbolized by an additional ‘N’, e.g. sph N corresponds to equation (1) and
pow N to equation (2) in Richter and Kroschewski (2006).

As far as relations between the models exist, they will be characterized as follows:
A c B denotes that model A is a special case of B. The following representation
does not take into consideration a possible nugget effect (in brackets: the number
of parameters without nugget and special characteristics).

1sotropic anisotropic
sph (2) c sphga (4, geometric anisotropy)

exp (2) ¢ expga (4, geometric anisotropy)

pow (2) powa(3) c expa (5,both: separable nisotropy)
M

matern (3)

O

gau (2) < gauga (4, geometric anisotropy)

Expa and expa N loom large in the following results. The covariance function
ofexpa N is

C,+C ifh,=h, =0

—t.hP* —t,-h P .
C-e™xMx g7y otherwise



Geostatistical Methods in Agricultural Field Trials, Part II 71

with hy and h, being the distances in the x- and y-direction, while px and t,, resp.
py and t, are the parameters for the two directions. If px > 1 and/or py > 1, then
expa has a sigmoid shape in the x- and/or y-direction; otherwise it does not.
Powa is a special case of expa with px = py = 1 in (1) and has therefore no
points of inflection. Both models are separable (Cressie, 1993).

Gauga and gau are models with a sigmoid shape. Matern may or may not
have a point of inflection depending on the smoothness parameter.

Expga, sphga and gauga are models for geometric anisotropy. In these cases,
the isolines of the spatial covariogram lie on concentric ellipses with
perpendicular main axes, which, in contrast to powa and expa, do not
necessarily correspond to the x- and y-axis. The corresponding isotropic forms are
pow, sph and gau.

As a consequence of part I (Richter and Kroschewski, 2006) we expected
anisotropy associated with a sigmoid shape for regularized data and
omnidirectional calculations. Expa and gauga are the only functions which may
display these characteristics.

The REML-procedure in PROC MIXED, which is used for parameter estimation,
led to numerical difficulties in many cases. In most situations, we could overcome
this problem by default of suited initial values.

For all considered plot sizes, we fitted the omnidirectional covariograms using the
option of a potential correlation over the whole area (subject=intercept).
Furthermore, for the plots 2x4, 2x6 and 2x8 we analysed the covariances in the x-
direction, while for the plots 4x2, 8x2 and 10x2 we analysed the covariances in
the y-direction (subject=y resp. X). Depending on the plot shape these are the
directions where the larger number of points are available for the estimation. Only
for 2x2 plots were the models fitted in both directions.

3. Results and Discussion

In the first trial, the spatial dependence was rather weak in all three years. In 1985
and 1987, the growing conditions were better because of higher rainfalls. Better
developed plants used the standing area and competed for resources. So, for the
potato yield the 1-lag correlation within the row was -0.2* in 1985 and -0.1" in
1987. For larger distances, the correlation oscillated more or less around zero, but
not generally with decreasing amplitudes. Between the rows, the 1-lag correlation
was nearly zero. 1986 was a dry year with bad developing conditions. In that year
there did not seem to be any competition. Within rows the correlation to the
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adjacent plant was +0.1" and was positive over the whole length of the rows. The
correlations between the rows were positive up to the fifth adjacent row. Because
of lack of competition, the similar soil conditions seem to account for this result.
1986 was the only year where, by summarizing adjacent plants to plots, the
above-described increase of the PSS could be observed (from 0.5 for single plants
up to 0.9 for plots with 20 plants per row).

This year-dependent result agrees with Hudson (1941) who noticed that
competition will only become operative when the spheres of absorption of the
roots overlap. He concludes that differences exist between root crops (wide
spacing between plants) and cereals (closer spacing). Competition begins for root
crops later than for cereals in the history of plant development (Hudson, 1941).

These considerations have made clear that normally the covariogram models
discussed above are not appropriate for single plants. Therefore, in the following
we will focus on practical results for plots which we found in the second trial.
Selected results of the model fit are given in Tables 1, 2, and 3.

Models with the smallest -2REML Log Likelihood show the best fit (Table 1). To
control a possible overfit both for the omnidirectional and for the directional
calculation, the model with the smallest Akaike criterion (AIC) is additionally
provided in Table 1. This criterion penalizes models with higher numbers of
parameters, so that models with fewer parameters will be preferred.

Table 1: Uniformity trial Blumberg: Models with smallest -2 REML Log likelihood and with
smallest AIC (if differently: italic). ® or ¥ : no sigmoid shape in x- or y-direction

crop plot
2x2 2x4 2x6 2x8 4x2 8x2 10x2
omnid. | expaN expaN  expaN  expaN | expaN  expa’  expa’
............. powaN | ~ powaN _powa | powaN __ powa _ _ powa
o <+ X) : X) :
g S| xedir mat lin N mat linN
B R TSR S .pow o pow L .
y-dir. mat N linN mat N sph N
gau N pow
omnid. expa N gaugaN expaN expaN expa N expaN  expaN
=Y SUURUR SNSRI S gauN
ca T T Tgan N au N matN  matN
8 & | =x-dir gau g
=Sl DU S e guN __gauN § .
8 y-dir. gau N gau N gauN  gauN
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- . expa N expaN  sphgaN gaugaN | expaN expgaN expgaN
o] omnid
Bl SphN_ expga | gauN  gauN  expga
5 & | x-dir. mat N mat N sph N linN
- R I pow | pow _ pow |
y-dir, lin N gau N gau N lin N
omnid. | expaN expaN  gaugaN  sphga expa N expa®  expa NV
_______________________ gawN _ _ gauN  sph | ... _powa
2 g x-dir mat N mat N gauN  matN
el SUUUR B gauN | gauN  gauN |
y-dir sph N mat mat sph
sph lin
omnid. expa N expa N expaN  expa? expaN  expaNY  expa?
______________________ .........powa _ powa | sphga
g‘ R x-dir mat N mat N mat sph N
S N powN | pow  _pow _ pow | e
y-dir. linl N sph N sph N sph N
sph sph

At first the results for the 2x2 plots will be discussed. The omnidirectional
calculation yielded anisotropy for both criteria and points of inflections in both
directions with the -2REML criterion. For 4 of 5 crops, the sigmoid shape remains
with AIC. So already the smallest observed plots show the previously discussed
typical behaviour of regularized data. From these results, we expected that the
directional calculations would show a sigmoid shape in every case. However,
depending on the criterion, only 6 or 4 cases respectively out of 10 functions had
such a shape. The omnidirectional calculation showed the existence of a nugget
with both criteria, the directional ones in most cases.

Based on the 2x2 results and part I (Richter and Kroschewski, 2006), we assumed
that the anisotropy and the sigmoid shape do not vanish for larger plots.

Altogether, for all 35 omnidirectional cases analysed, we found anisotropy with
the -2REML criterion. Except in four cases, the functions have a point of
inflection in at least one direction (88.6%). This confirms the expectation that
anisotropic sigmoid models are best suited for regularized data. It is remarkable
that expa or expa N occurs 28 times out of 35 cases. These models are with 5 or
6 parameters respectively the most flexible models, but they assume that the main
axes of anisotropy correspond to the x- and y-axis. This condition is not satisfied
in the 7 cases where geometric anisotropic models give the best fit. In these
situations, the x- and y-directional covariograms are not enveloping curves for the
omnidirectional one. Comparing the results of both criteria, 19 times we found a
model with fewer parameters by using AIC. Partially the anisotropy, the sigmoid
form or the nugget vanish; sometimes even two characteristics disappear.
Nevertheless, expa or expa N remain the most frequent models (15 times).
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For the directional covariograms the model preference is more heterogeneous,
however, following the -2REML criterion, mat and mat N occur most frequently
(16 times out of 40 cases) where in 14 cases a point of inflection exists. Together
with gau and gau N, there are 23 models with a sigmoid shape (57.5%). With 3
and 4 parameters, the models mat and mat N are more flexible than the others.
By using the AIC for the directional calculations, the percentage of sigmoid
curves decreases to 40 %. Now, the 16 situations with a sigmoid form result in the
majority of cases from gau and gau N (15 times) and only once from mat. It is
remarkable that the cereals especially show the sigmoid shape. For the other
crops, the best models change more or less for the different plot sizes. The
expectation that the omnidirectional calculation leads to the corresponding results
for the directional calculation could only be partly fulfilled.

In Table 2 the percentages of selected model characteristics are summarized.

Table 2: Uniformity trial Blumberg: Percentages of selected model characteristics

-2 REML Log likelihood AIC

omnidirectional (35 cases) percentage percentage

anisotropy 100.0 80

point(s) of inflection 68.6 (two) + 20 (one) 37.1 (two) + 20 (one)

nugget 82.9 65.7
directional (40 cases)

point of inflection 57.5 40.0

nugget 85.0 60.0

For the omnidirectional calculation, the development of the parameter estimations
depending on the plot size will be demonstrated in Table 3. The parameter
development is only reasonably comparable for the same basis model. Because in
the majority of cases the best fit was achieved with expa or expa N (using the -
2REML criterion), these models are demonstrated. In the remaining 7 cases, expa
N or expa are chosen depending on the smaller -2 REML Log likelihood.

In accordance with the remarks in part I (Richter and Kroschewski, 2006), in most
cases C, Cy and C+C, decrease with increasing plot sizes. For the 2x2 plots,
C/(Cy+C) grows with the plant density of the crop (sugar beet: 9 plants per m?,
hemp: 50-100, cereals: 350450 stems per m?).

Schabenberger and Pierce (2002) and Zimmerman and Harville (1991) have
stated that the inclusion of a nugget effect seems to be unnecessary in many field
experiments by referring to Besag and Kempton (1986). Their experiments were
performed with cereals and had a plot dimension larger than 6.5 m’.
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Table 3: Uniformity trial Blumberg: omnidirectional calculations. Parameter estimation of the
models expa or expa N. ‘range’ corresponds to the practical range (italic: ‘range’ < plot
dimension). ¥ or” : no sigmoid shape in x- or y-direction. (...) models with no smallest -2 REML

Log likelihood
crop plot
2x2 2x4 2x6 2x8 4x2 8x2 10x2
model expaN | expaN expa N expaN | expaN expa®) expa”
<+ |C 1147.3 994.7 952.1 96191 1055.2 1031.2 741.2
E Co 3842 200.0 107.0 39.6 156.2 0 0
a |C+C, 1531.5 1194.7 1059.1 1001.5§ 12113 1031.2 741.2
£ C/(Cy*+C) 0.749 0.833 0.899 0.960 0.871 1 1
< lrange (x) 13.6 12.1 15.6 18.8 11.9 47.2 239
range (y) 18.0 16.4 16.4 18.6 18.5 17.1 22.1
“ model | expaN | (expaN)  expaN expaN | expaN  expaN expa N
o [cC 3.137 2.026 1.639 1.483 3.076 2.021 1.794
o 1GCo 0.032 0.354 0.272 0.244 0.162 0.398 0.273
2 | C+Cy 3.168 2.380 1.912 1.727 3.238 2.419 2.067
8 | CHCyHC) 0.990 0.851 0.858 0.859 0.950 0.835 0.868
§ range (x) 9.4 6.7 6.9 6.9 16.5 3.0 3.1
range (y) 9.5 L7 2.0 2.1 8.6 6.2 6.5
° model expa N expa N (expaN) (expaN) | expaN (expaN) (expa)
o |C 3861.6 3215.8 2393.1 2566.1| 2186.2 2077.3 3146.0
= 1C 4816.4 2610.0 1959.5 1635.5) 3815.7 1948.5 0
%’ C+Cy 8678.0 5825.7 4352.7 4201.6| 6001.9 4025.8 3146.0
5 CHCC) 0.445 0.552 0.550 0.611 0.364 0.516 1
%" range (X) 6.9 9.4 10.5 9.6 9.2 9.1 11.2
range (y) 7.1 5.6 8.1 2.7 7.1 7.7 10.0
model | expaN | expaN  (expaN) (expaN) | expaN expa® expa NV
~ 1€ 14.485 12.319 12.180 12.027) 14.462 15.094 11.451
2 G 3.429 2.532 1.726 1.236 1.033 0 0.384
= 1 C+Cy 17914 14.851 13.906 13.263 ) 15.495 15.094 11.835
§ C/Cyt+C) 0.809 0.830 0.876 0.907 0.933 1 0.968
range (x) 12.2 10.8 10.8 12.9 11.5 28.1 44.1
range (y) 8.0 7.7 9.5 8.2 8.4 11.3 12.1
model | expaN | expaN expa N expa” expaN  expa NV expa®
o |C 819.0 685.2 684.0 620.1 729.6 604.1 622.5
& G 250.1 153.9 58.8 0] 1336 26.2 0
o |ctc, 1069.0 839.0 742.8 620.1 863.2 630.3 622.5
g C/(Cyt+C) 0.766 0.817 0.921 1 0.845 0.958 1
= | range (x) 12.6 9.8 9.9 17.2 18.0 41274 ©
range (y) 9.6 10.3 7.9 9.7 10.0 9.6 10.8

Indeed, for larger plot sizes, the nugget effect more or less vanishes.
The practical ranges react very sensitively, so that the effects described in part I
(Richter and Kroschewski, 2006) cannot be detected in the parameters of the
fitted EXPA models. Especially in those cases where a point of inflection does not
exist in the x-direction, the ranges are large. In some other cases, the range is
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smaller than the dimension of the plot in this direction. This indicates that these
plots soak up all spatial correlation. If one works with models without points of
inflection, e.g. POWA or POW with or without nugget, this reaction is far less
sensitive.

4. Concluding remarks

The comments about the behaviour of single plants have shown that single plants
have for the most part a totally different correlation structure than could be
described by a spherical or exponential model. Only by summarizing of plants to
plots and by the superimposition of environmental effects do covariances appear
which could be modelled by the discussed standard models. However, in our trial
discussed above, the regularization effect becomes apparent even for 2x2m’ plots.
On the other hand, it must be pointed out that with increasing plot size the points
may be so sparse that a point of inflection cannot be observed.

The results of the example discussed and previous experiences with designed
experiments have shown that the sigmoid shape and anisotropy of the
covariogram functions of plots should be frequently considered. The nugget
becomes smaller with increasing plant density, and more or less vanishes for
larger plots. In accordance with the principle of parsimony with respect to the
number of parameters, simpler models are sometimes sufficient. However, in the
case of an omnidirectional calculation, models lacking all three observed
characteristics — nugget, anisotropy and point of inflection — are rare. We realize
that the concrete results depend on the observed crops, soil and weather
conditions. To what extent these results can be generalized is an issue that needs
further investigation. In part I of this paper (Richter and Kroschewski, 2006) we
mentioned that the exponential and spherical models are very often used in the
literature about geostatistics in agricultural field experiments. We assume that the
fit of the other models discussed in this article has not been considered.

The use of the covariogram function in the planning phase of an experiment and
its comparison with other methods will be discussed in a further paper.
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